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Molecular-dynamic calculation of the relaxation of the electron energy distribution function
in a plasma

N. David and S. M. Hooker
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 28 July 2003; published 3 November 2003!

A molecular-dynamic~MD! code is used to calculate the temporal evolution of nonequilibrium electron
distribution functions in plasmas. To the authors’ knowledge, this is the first time that a molecular-dynamic
code has been used to treat this problem using a macroscopic number of particles. The code belongs to the
class ofP3M ~particle-particle-particle-mesh! codes. Since the equations solved by the MD code are funda-
mental, this approach avoids several assumptions that are inherent to alternative methods. For example, the
initial energy distribution can be arbitrary, and there is no need to assume a value for the Coulomb logarithm.
The advantages of the MD code are illustrated by comparing its results with those of Monte Carlo and
Fokker-Planck codes with a set of plasma parameters for which the Fokker-Planck calculation is shown to give
incorrect results. As an example, we calculate the relaxation of the electron energy distribution produced by
optical field ionization of a mixed plasma containing argon and hydrogen.

DOI: 10.1103/PhysRevE.68.056401 PACS number~s!: 52.65.Yy, 52.65.Ff, 52.65.Pp, 42.55.Vc
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I. INTRODUCTION

The general question of how a given distribution of ele
tron velocities in a plasma reaches equilibrium has been
interest for some time; the first calculations being those
dertaken by Spitzer@1# and Dolinsky@2# more than 40 years
ago. The time taken for the electron energy distribution
reach equilibrium is often very short compared to time sca
of interest, in which case it is appropriate to treat the el
trons as being in local equilibrium with a well-defined tem
perature. However, following the development of short-pu
laser systems, knowledge of the formation and evolution
the electron energy distribution on picosecond and femto
ond time scales is important in a wide range of applicatio
In the light of this Spitzer and Dolinsky’s results have be
incorporated in a number of modern numerical compu
codes@3,4#. Most codes solve the Fokker-Planck equatio
i.e., the Vlasov equation for the evolution of the veloc
distribution of charged particles with an additional collisio
term. In most cases, as in this paper, the particles are tre
nonrelativistically.

The reason one has to use the Fokker-Planck equa
instead of using a two-body collision calculation, is the lon
range effect of the Coulomb field. So, instead of mak
predominantly short-range, two-body collisions, the el
trons are constantly subject to weakly scattering, ma
particle collisions. In the Fokker-Planck equation the co
sion term is derived from the two-particle scattering cro
section. However, since the cross section diverges for la
impact parameters, one normally introduces a long-ra
cutoff bmax for the impact parameter. This cutoff is genera
related to the Debye length of a plasmalDebye5Ae0T/e2ne
in which T is the electron temperature in Joules andne is the
electron density. Using this long-range cutoff and a furth
cutoff bmin for short-range, large angle collisions, which
related to the de Broglie wavelengthldeBroglie5h/A3mT
and the classical distance of closest approache2/mv2, one
can define the Coulomb logarithm lnL. The Coulomb loga-
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rithm is an important parameter of the collision term, a
there exist a number of different definitions of this quanti
depending on the plasma conditions, but it is essentially
the form lnL5ln(bmax/bmin) @5,6#.

The approximations inherent in the use of the Coulo
logarithm may be illustrated as follows. For a plasma w
ne51019 cm23 and T54 eV the Debye length islDebye

54.7 nm. In this case the number of particles contained
the Debye sphereNDebye5

4
3 plDebye

3 ne'5. Since this is not
a large number, shielding of charge fluctuations on the sc
of the Debye length will not be complete and hence the
the Debye length as the long-range limit in the Coulom
logarithm is likely to lead to errors. We note that the requi
ment for the Debye shielding picture to be correct,NDebye

@1, is equivalent toG5e2/(e0lDebyeT)!1, whereG is the
plasma coupling parameter. Consequently the Spitzer for
las are only valid for weakly coupled plasmas. In addition
the general problem of the Coulomb logarithm, the Spit
calculations require a velocity distribution that is close
equilibrium to be valid. This means that a large proportion
the particles have to be in a Maxwell-Boltzmann distributi
and the speed of the ‘‘test’’ particles whose equilibration
being calculated must not be considerably larger than
thermal speed of the background plasma.

The molecular-dynamic~MD! approach employed her
has the advantage of being derived from a more fundame
set of equations, with fewer assumptions. One does not n
to define a Coulomb logarithm; instead all that is needed
the nonrelativistic calculation are the electrostatic Maxw
equations and Newton’s equations of motion. Consequen
MD calculations can be employed for plasma conditions
der which alternative approaches lead to significant errors
well as providing a reliable test for faster approximation
The major disadvantage of this method is its speed. Si
every particle has to be treated individually, and a rat
large number of particles is needed to reach statistic
meaningful results, MD codes are slow compared to ot
approaches. It is therefore of particular importance to
©2003 The American Physical Society01-1



io

ax
er

o
th

rg
ea

-
m
g

ly
re

ts
s.
th
on
In
e
c

ec
c
su
es
en
se

n
th

.
t
o
io
a
er
n

cle
d
i-
of
e

ion
al-
tio
t

lli-

ko
d

ere-

tion

nted
to
olv-
rier
t
ned
ame

city
y a

ause
very

ace,

N. DAVID AND S. M. HOOKER PHYSICAL REVIEW E68, 056401 ~2003!
algorithms where the number of steps is a low-order funct
of the number of particles.

Molecular-dynamic calculations of the temperature rel
ation of a strongly coupled two-temperature plasma w
first performed by Hansen and McDonald@7# in 1983 and
later by Reimann and Toepffer@8# in 1990. In these early
papers the equations of motion for a small number
charged particles were integrated directly. Owing to
small number of particles used~128 and 108, respectively!, it
was not possible to investigate the behavior of an ene
distribution function. Instead, only statements on the m
energy of two particle groups with well-defined initial tem
peratures could be made. The calculated relaxation ti
agreed surprisingly well with the Spitzer values even thou
coupling parameters of up toG55 were being simulated. In a
somewhat different context, Murillo@9# has employed a MD
code to investigate the possibility of forming a strong
coupled ion plasma from a cold atomic gas. Furthermo
Zwicknagelet al. @10# used a MD code to calculate resul
concerning the stopping power of heavy ions by electron

In this paper we describe what is to our knowledge
first molecular-dynamic code for calculation of the relaxati
of an arbitrary electron energy distribution in a plasma.
Sec. II we outline the operation of the code. In Sec. III A w
compare its results against several test cases for plasma
ditions under which alternative methods are valid. In S
III B we discuss in detail a case for which the Fokker-Plan
method gives inaccurate results, and we compare the re
of those codes with those from Monte Carlo and MD cod
In Sec. III C we consider an example case which is of curr
interest in the study of new types of short-wavelength la
and in Sec. IV we conclude.

The calculations were performed on a 2.4-GHz perso
computer and took 3 days on average for a calculation of
evolution of the energy distribution of 23105 particles over
10 ps.

II. THE MOLECUAR-DYNAMIC CALCULATION

A. The P3M Method

Solving the individual force equations for each of theN
particles in a system would requireN2/2 individual force
calculations to be undertaken every integration time step
addition, the time step would have to be small enough
resolve even the hardest collisions. In total, this meth
would end up taking several years for a simple calculat
with 23105 particles, even if the conservation errors th
inevitably accompany integration over many time steps w
neglected. A large reduction in the number of calculatio
required can be achieved by employing the particle-parti
particle-mesh (P3M ) method first described by Hockney an
Eastwood@11#. In this method the force on a particle is d
vided into a collective, long-range term from the majority
the particles~particle-mesh!; and a short-range, strong-forc
term by the particles close to the particle in quest
~particle-particle!. Using this general idea, we chose to c
culate the long-range effects by solving the Poisson equa
on a mesh, and treating the short-range effects by using
analytical two-body solution for an electron-electron co
05640
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sion. TheP3M method has recently been used by Don
et al. @12# for molecular-dynamic studies of strongly couple
charged particle bilayers. The problem considered was th
fore a two-dimensional~2D! one. In that work the short-
range collisions were calculated using a Coulomb correc
term, not by employing the analytical trajectories.

In our code the coordinate space is a 3D cube, represe
by a 643-point grid. The boundary conditions are chosen
be periodic. The long-range effects are then treated by s
ing the Poisson equation on the mesh with a fast Fou
transform ~FFT! @13#. To ensure that collisions are no
treated twice, particles are treated as if they were positio
at the closest grid point since particles that are at the s
grid point do not feel each other@14,15#. Solution of the
Poisson equation and the evolution of the electron velo
distribution in the associated electric field is achieved b
set of difference equations in the usual way@16,17#. Note
that the ions are treated as a positive background, bec
the energy exchange between them and the electrons is
slow as a result of the large difference in mass.

The system of differential equations is

DF~xW !52
r~xW !

e0
, ~1!

EW ~xW !52¹W F, ~2!

m
dvW
dt

5qEW ~xW !, ~3!

wherem is the electron mass,q is the electron charge,F is
the electrostatic potential,EW is the electric field, andr is the
charge density.

Introducing the distancex0, which defines the length of a
single side of a cell, one can define dimensionless sp
time, density, and electric fields:

xW85
xW

x0
, ~4!

t85
ct

x0
, ~5!

r85r
x0

3

e
, ~6!

F85
x0e0

e
F, ~7!

EW 85
e0x0

2

e
EW . ~8!

Defining the dimensionless parametera5e2/e0c2x0m,
and dropping the primes, our set of equations becomes

DF~xW !52r, ~9!
1-2
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EW ~xW !52¹W F, ~10!

dvW
dt

5aEW ~xW !. ~11!

Equation ~9! is then solved using two FFTs@13#. The
calculation time for a FFT is proportional toNcellln Ncell ,
whereNcell is the number of cells. Provided that the numb
of cells is not much larger than the number of particlesN, the
time to calculate the FFT is very much shorter than t
required to solve theN2/2 force equations.

B. Energy renormalization

A known problem with solving the field equations on
mesh and then using a difference equation to accelerate
ticles is that energy is not conserved. While this effect is v
small, it leads to an overall increase in electron energy a
many time steps and, given that we are interested in de
mining the evolution of the electron energy distribution, th
effect must be canceled by regular renormalization. In or
for the renormalization to not change the physics one is
ing to observe, the renormalization has to have the sa
velocity dependence as the erroneous energy gain.

Since the problem is treated nonrelativistically, the forc
and hence the momentum transfer, are independent of ve
ity. If a particle with momentumpW is erroneously given an
additional, unphysical momentumPW , the resulting error in
the energy of the particle is

dE5
1

2m
@~pW 1PW !22pW 2#5

pW •PW

m
1

P2

2m
.

For an isotropic momentum distribution the ter
pW •PW /m will average to zero, and hence the average ene
error per particle will bedE5P̄2/2m. Since the total energy
of the system is known to be constant, the total energy e
dEtot can be calculated easily. ForN particles this results in
an average error per particledE5dEtot /N5P̄2/2m.

The average energy errordE5P̄2/2m may be written as

P̄2

2m
5

P̄x
21P̄y

21P̄z
2

2m
5

P̄ i
21P̄'

2

2m
,

whereP̄ i
2 is the average energy gain due to unphysical m

mentum displacements parallel to the velocity vector of
electron, andP̄'

2 is the energy gain due to displacemen
perpendicular to the velocity of the electron. Using simp
3D symmetry relations for an isotropic distribution yields

P̄'
2 52P̄ i

25
2P̄2

3
. ~12!

For a single particle with true momentumpW the displaced
momentum ispW d5pW 1PW i1PW ' . This results in an erroneou
energy gaindE5(PW i

21PW '
2 12pW •PW i)/2m. Since the average

value of pW •PW i is zero, from this last result we recoverdE
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21P̄i

2)/2m5P̄2/2m. However, the termpW •PW i is impor-
tant since it can change the shape of the velocity distribu
function. Since one does not know the sign of this prod
for any individual particle, statistical properties have to
used. For a particle with displaced total momentumupW du the
probability that its true momentum isupW du2uP̄ iu is propor-
tional to the value of the distribution function for this mo
mentum. Similarly the probability for the particle to have
true momentum ofupW du1uPW iu is proportional to the respec
tive value of the distribution function. Therefore in each tim
step, and for each particle, a Monte Carlo procedure is u
to determine whether the particle is moved to higher or low
momentum. In so doing the energy correction (P i

2

1pW •PW i)/2m has been accounted for. It only remains to su
tract the termP̄'

2 /2m from the energy of each particle.

C. Analytical two-body collision

Collisions between particles inside the same cell
treated explicitly using the analytical two-body solution. F
each time step and for each cell the program determines
many particles are in the cell. Whenever there is more t
one particle in a cell it treats all collisions as two partic
analytical collisions in the respective center of mass fram
In general these frames will be weakly accelerated fram
due to the effect of the global electric field. The known an
lytical hyperbolic solution@18# is used to determine the exa
momentum transfer the two particles experience in pass
through the whole cell. Since it can take slow particles
many as 30 time steps to pass a single cell, the momen
transfer is always done at the time step during which
particles pass each other. If there are only two particles in
cell, this yields the correct momentum transfer. We chose
calculate the momentum transfer for a cell passage instea
for each time step, since the latter would result in a mom
tum transfer error due to the finite time step especially
fast particles. These particles could have traveled nearly h
way across the cell the first time they enter it. By calculati
the momentum transfer for a cell passage we minimize er
in the momentum transfer. Of course, this approach can
to small errors in the calculated positions of the two p
ticles. However, we are interested in the velocity distributi
and not in the exact positions of the particles.

Figure 1 illustrates how the two-particle scattering
treated. The positions of the particles at the previous ti
step are illustrated by open circles. If during the next tim
step it is calculated that the particles would pass each ot
the particles are given their initial momenta for half the tim
step and the final momenta of the analytic solution for
remaining half. In this way the full analytical curve~dashed!
is approximated by straight sections.

The momentum transfer calculation is performed in t
center of mass frame, so that the two-particle problem can
converted into a one-particle problem. In this mathemati
frame, the other quantities needed to calculate the mom
tum transfer are the angular momentuml, the relative veloc-
ity v rel and the total energy of the relative motionE
5 1

2 m ṙ 21 l 2/(2mr 2)1a8/r , where m is the reduced mas
1-3
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N. DAVID AND S. M. HOOKER PHYSICAL REVIEW E68, 056401 ~2003!
anda85a/4p. The total scattering angleC8 ~in the center of
mass frame! for the particle traveling across the whole ce
can then be calculated:

cosS C8

2
D 5

4lE/a822l /r

v relA114l 2E/a82
, ~13!

wherem50.5 has already been substituted
The parameterr appearing in the numerator is the di

tance the two particles are apart at the beginning of the
culation. Since the resolution of the discrete mesh is 1,
setr 51. Clearly this is an approximation. However, we no
that settingr equal to the particle separation at the beginn
of the time step is incorrect since the particles would ha
interacted from the moment they both entered the same
It would also be incorrect to setr equal to the distance be
tween the two points where the particle trajectories cross
boundary of the cell, since in reality they would also ha
interacted when they were outside the cell. Within the M
approach interaction between particles in different cells
treated in an average way through the Poisson equa
which will tend to underestimate the force between partic
entering the same cell. Hence takingr 51 for all collisions is
a sensible compromise.

There are a number of problems with this approach t
should be acknowledged. With a finite time step, two p
ticles on the border of adjacent cells might swap cells w
out feeling the hard analytical repulsion. This problem c
always be reduced by a smaller time step, but never el
nated. There is therefore a small percentage of hard enc
ters not taken into account. For the parameters used in
calculations presented in this paper, approximately 1%
hard two-body encounters are lost.

A second problem arises when there are three particle
a cell since they are treated as three two-body collisions
stead of one three-body collision. In most cases this will
make a significant difference. Even though the number
cells used is larger then the particle number, there is st
certain fraction of cells that hold three or more particles. F
643 cells and 23105 particles there are of the order of 104

cells, i.e.,'4%, that contain three or more particles. Ho
ever, the cross section for three-particle collisions is usu
rather small. For example, for a typical collision between

Particle 1

Particle 2

Ψ

FIG. 1. Schematic diagram showing how scattering of two el
trons within a single cell is treated.
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fast and a slow particle of total energy 50 eV to result in
significant momentum transfer, i.e., one that would yield
scattering angle ofC8.0.5 rad, the impact parameterb
would have to beb,0.024@Eq. ~13!#. This corresponds to a
cross sections25pb2'0.0018. If this is multiplied by the
average distance that the fast particle covers in one time s
this would result in a volumeVcoll'1.831024. A three-
body collision with significant momentum transfer will occu
if there are two other particles within this volume. The pro
ability for this to occur isP3'(Vcoll

2 )'331028. If this
probability is multiplied by the number of cells with three o
more particles, it gives an estimate as to how often a sign
cant three-body-collision occurs. This is roughly everyt3
5(104P3)21'3000 time steps. Considering the large nu
ber of collisions every time step, this small proportion c
safely be neglected.

III. RESULTS

A. Tests

We have tested the code described above against se
calculations by earlier authors. Before describing these,
note that if the initial electron energy distribution is a Ma
wellian distribution over velocities, the calculated distrib
tion should not change shape apart from the statistical fl
tuations that are always present when working with a fin
number of particles. Figure 2 shows the calculated evolut
of Maxwell-Boltzmann speed distributions for initial tem
peratures of~a! 4 eV and~b! 245 eV. For both calculations
the initial distribution is compared with that calculated aft

-
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FIG. 2. Calculated evolution of Maxwell-Boltzmann speed d
tributions for initial temperatures of~a! 4 eV, ~b! 245 eV. For both
calculations the electron density was 1019 cm23; the initial distri-
bution is shown by the dotted curve, and the distribution after 10
by the solid line.
1-4



-
s

wn

he
u

nd

a
f

n
d
th

th

no
of
od

i
h

ll-
ian
and
r

r

n.

nd
e of
o-

ri-

es
e
n-

ion
ar-
e
es
m-
per

ase

en

fte ak

n
sian
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10 ps. The calculations employed 23105 electrons at a den
sity of ne51019 cm21. It is clear that the MD code maintain
the Maxwell-Boltzmann distribution, as it should.

It is interesting to test the code against the well-kno
results obtained by Spitzer@1# under conditions in which his
approach is valid. The Spitzer equilibration formula for t
rate of equilibration of a two-temperature electron distrib
tion is

dT

dt
5

Tf2T

teq
~14!

with

teq5
171 247

nf ln L
~T1Tf !

3/2,

where the two groups of particles are denoted ‘‘test’’ a
‘‘field,’’ with temperatures in eV ofT and Tf , respectively,
andnf is the density of the field particles in cm23.

Figure 3 shows how an initial speed distribution for
group of hot electrons with temperature and density oT
554.4 eV andn52.031014 cm23, respectively, is cooled
by field electrons with a temperature and density ofTf
54 eV andnf51.031016 cm23. The figure shows the ini-
tial distribution and that calculated afterDt5198 ps, corre-
sponding to 13% ofteq . The Coulomb logarithm was take
to be lnL55. Cooling of the hot electrons, and correspon
ing heating of the cold electrons, is clearly observed in
simulation.

The Spitzer formula yields a temperature change for
hot electrons of

DT5Dt
Tf2T

teq
526.65 eV.

Since the high-temperature peak is very spread out and
Maxwellian afterDt5198 ps it is only a possible estimate
the temperature of the test electrons. By equating the m
energy of the electrons in the high-energy peak to3

2 Tnew, we
find Tnew5(48.061.0) eV. Hence the temperature change
found to beDT52(6.461.0) eV, in good agreement wit
the Spitzer result.
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FIG. 3. Calculated evolution of a two-temperature electron
ergy distribution withTf54 eV andT554.4 eV. The initial distri-
bution is shown by a dotted line and the calculated distribution a
10 ps by a solid line.
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Dolinsky @2# has considered the relaxation of a Maxwe
ian electron energy distribution coexisting with a Gauss
distribution of hot electrons. To describe the temperature
density of the plasma Dolinsky we defined the paramete

k0

kD
5S 4pe0T

e2 D 3/2
1

A4pn
,

and chosek0 /kD5100 for his simulations. The formula fo
the equilibration time Dolinsky uses is

tD~v0!5
~4pe0!2m2v0

3

8pne4ln LH 2

3
erfFA3

2
G2A 2

3p
expS 2

3

2
D J ,

wherev0 is the root-mean-square velocity of the distributio
If we consider a plasma with an electron density ofn
51017 cm23, the conditionk0 /kD5100 corresponds to a
temperature for the Maxwellian component of 3.34 eV, a
the peak of the high-energy Gaussian is at a temperatur
33.5 eV. The value of the Coulomb logarithm used by D
linsky is not stated, but it is reasonable to assume lnL55 for
these conditions, giving a relaxation time oftDebye(v0)
55.73 ps. Figure 4 shows the initial electron velocity dist
bution and the distribution calculated fort50.19tDebye(v0)
by Dolinsky and our code. It is clear that our code agre
very well with Dolinsky’s result. We note that since the tim
interval of interest is very short, we could afford to use co
siderably more particles and more cells for this calculat
than for the other calculations in this paper: 1 592 896 p
ticles in 1283 cells were used to minimize fluctuations in th
low-density velocity regime for these calculations. This do
not alter the dynamics of the program, since all the para
eters are unchanged as well as the number of particles
cell. It does, however, reduce statistical noise and incre
the calculation time.
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FIG. 4. Comparison of the results of the MD calculation~solid
line! with the results of Dolinsky~dashed line! for relaxation of a
Maxwell-Boltzmann distribution with a high-energy Gaussian pe
after 0.19tDebye(v0)51.09 ps. The initial distribution is given by
the dotted line. The electron density was taken to ben
51017 cm23 and the initial distribution to comprise a Maxwellia
background with a temperature of 3.34 eV together with a Gaus
peak at 33.5 eV.
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B. Comparison with Monte Carlo and Fokker-Planck
calculations in moderately coupled plasmas

We now compare the results of our MD code with rece
Fokker-Planck and Monte Carlo calculations by Pert@3# for a
far from equilibrium plasma produced by optical field io
ization ~OFI!. Plasmas of this type are of great interest
potential gain media for new types of short-wavelength la
The comparison presented here shows a discrepancy
might be explained by a breakdown in the assumptions
herent in the use of a Coulomb logarithm.

The initial distribution over electron velocities consider
by Pert@3,4# is a plasma created by optical field ionization
helium by a 0.3 ps pulse of circularly polarized light with
peak intensity of 1016 W cm22 and a wavelength of 616.4
nm. The optical field ionization formed a plasma with a to
electron density ofn51018 cm23, a mean ion charge of 1.2
and an electron energy distribution that comprised two pe
with velocities 5.293106 m s21 and 1.063107 m s21, the
lower energy peak containing'80% of the electrons.

Figure 5 compares the results of our MD calculation w
those of Pert at 9.6 ps after the end of the laser pulse@4#. It
can be seen that the Fokker-Planck calculation predicts
the energy distribution is essentially equilibrated, wher
the MD and Monte Carlo codes predict that the distribut
is still far from equilibrium. The latter two calculations ar
generally in good agreement with the MD code predict
that the energy distribution is slightly closer to equilibriu
than the Monte Carlo calculation. It is interesting to comp
these results with the Spitzer equilibration time, Eq.~14!.
Taking the field particles to be the electrons in the low
energy peak and the higher-energy electrons to be test
ticles, we have initial temperatures ofTf552.4 eV and
T5209.5 eV, and a Coulomb logarithm of approximate
ln L510. These parameters yield a Spitzer equilibration ti
of teq573 ps. Of course, for the case considered here
field particles do not have a Maxwellian distribution, and t
proportion of test particles is rather high. However, w
would not expect the true equilibration time to be very d

0 0.5 1 1.5 2
|v|/vrms 

0

0.5

1

1.5

f
(|
v
|)

FIG. 5. Comparison of the relaxation of a nonequilibrium d
tribution of electron energies produced by optical field ionizatio
as calculated by the Fokker-Planck~squares! and Monte Carlo~dia-
monds! codes of Refs.@3,4#, and by the MD code~solid! described
in the present paper. Also shown~crosses! is the distribution calcu-
lated by a modified Monte Carlo code in which an averaged C
lomb logarithm was used. For all calculations the electron ene
distribution is shown 9.6 ps after the passage of the ionizing la
pulse.
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ferent from the Spitzer value. As such, 9.6 ps correspond
'13% of the equilibration time, and so we would expect t
distribution to still be approaching equilibration, which
more consistent with the results of the MD and the Mon
Carlo calculations.

The Fokker-Planck calculation employs an average va
for the Coulomb logarithm. Figure 5 also shows the resu
of a Monte Carlo calculation in which the inner cutoff for th
Coulomb logarithm has been averaged, rather than being
culated explicitly for each collision@19#. It is seen that the
modified Monte Carlo code then agrees very well with t
Fokker-Planck calculation which shows clearly how for ce
tain plasma conditions the use of an averaged Coulomb lo
rithm can give incorrect results. We emphasize that Fokk
Planck codes always assume an average value for
Coulomb logarithm.

C. Application to recombination x-ray lasers

As an example of a calculation that is presently of gr
interest, but which lies outside the ranges of validity of
ternative methods, we consider the relaxation of the elec
energy distribution of a mixed plasma formed by the com
nation of an electrical discharge and optical field ionizatio
The conditions considered are relevant for a recently p
posed scheme for driving soft x-ray lasers in plas
waveguides@20#.

Briefly, the proposed scheme operates as follows. It
been demonstrated that discharges through hydrogen-fi
capillaries form a parabolic plasma channel able to gu
femtosecond laser pulses with peak intensities
1017 W cm22 over lengths of up to 50 mm@21,22#. Very
recently a capillary discharge waveguide of this type w
used to drive a collisionally excited laser at 41.8 nm in Xe81

ions produced by optical field ionization of Xe atoms dop
into the capillary discharge. It has been proposed@20# to
extend this idea to recombination lasers in which the re
tively cold electrons formed by the discharge rapidly reco
bine with ions formed by optical field ionization of atom
doped into the plasma channel. Since the rate of three-b
electron-ion recombination scales with electron tempera
asT29/2 @23#, it is crucial for the success of this scheme th
the cold discharge electrons are not heated too rapidly by
electrons produced by optical field ionization of the dopa
ion. The energy of the electrons produced by OFI may
controlled by the polarization of the ionizing radiation: line
polarization generates relatively cold electrons; circular
larization produces hot electrons. For the proposed la
scheme the primary role of the driving laser is to produce
initial ions which will then recombine with the discharg
electrons. The polarization of the driving radiation shou
then be chosen to reduce the rate of heating of the disch
electrons. The best polarization to use is not obvious. L
early polarized radiation will produce colder OFI electro
but, using Eq.~14! as a guide, we would expect these to he
the discharge electrons more rapidly than the much ho
electrons generated by circularly polarized radiation. We
presently investigating this problem in detail. Here, we si
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ply provide a sample calculation to illustrate the flexibility
the MD code.

Figure 6 shows the result of a calculation relevant to o
example of this scheme: the 4s1/2-3p3/2 transition at 23.2 nm
in Ar71. The capillary discharge is taken to form a plasm
with a Maxwellian electron distribution of temperature 4
eV and a total electron density of 1019 cm23. The initial Ar
density is taken to be 1017 cm23. Under these conditions, th
argon is ionized by the discharge to Ar21. The precursor to
the lasant ion Ar81 is produced by optical field ionization
with a circularly polarized pulse of radiation of waveleng
566 nm and a peak intensity of 1.031017 W cm22, thereby
generating six classes of hot electrons with energies ran
from 100 eV to 1800 eV. Figure 6 shows the calculated
laxation of the initial electron energy distribution formed b
the discharge and optical field ionization. Note that the
scissa has a logarithmic scale in order to show the OFI pe
more clearly. It is seen that within 10 ps after the formati
of the optical field ionization the four lowest-energy O
peaks have merged into the tail of the distribution of d
charge electrons. In contrast, the highest two OFI clas
remain as distinct peaks and show only a slight cooling
this time scale. If one were to use the Spitzer equilibrat
times @Eq. ~14!# for these peaks, keeping in mind that th
formula is not strictly valid for these parameters, the lowe
energy peak would have an equilibration timeteq'2 ps and
for the highest-energy peakteq'130 ps, which at leas
qualitatively agrees with the observed relaxation of

0.02 0.04 0.06 0.08
|v| / c

100

1000

10000

nu
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 p
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FIG. 6. Calculated relaxation of the electron energy distribut
produced by optical field ionization of Ar21 ions in a mixed argon-
hydrogen plasma with a temperature of 4.3 eV. The total elec
density is 1.0631019 cm23. The ionizing laser pulse is taken to b
circularly polarized with a peak intensity of 1.031017 W cm22, a
pulse duration of 30 fs, and a wavelength of 566 nm. The ini
distribution formed by the discharge and OFI is shown by the do
curve, and the calculated distribution after 10 ps by the solid l
Also shown is a Maxwellian distribution at 10.5 eV~dashed!.
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peaks. Of key importance to the proposed recombination
ser scheme is the heating of the discharge electrons at 4.
by the hot OFI electrons. Figure 6 also shows a Maxwell
distribution at 10.5 eV which fits the bulk of the low-energ
part of the energy distribution very well. We conclude, the
fore, that the presence of the electrons generated by OF
Ar heats the cold discharge electrons by'6 eV in 10 ps.
Whether this heating is sufficiently slow to allow rapid r
combination with the Ar81 ions will be the subject of future
work. In the meantime we emphasize that the conditio
considered here fall outside the range of validity of the
sumptions made by Spitzer: a plasma which is far from eq
librium; a relatively high proportion of test particles; and
small number of particles in the Debye sphere (NDebye
,10). For this last reason, any approach that incorporat
Coulomb logarithm is likely to produce inaccurate results

IV. CONCLUSION

In summary, we have described a molecular-dynam
code for calculating the relaxation of an arbitrary electr
energy distribution in a plasma. To our knowledge, this is
first time that the MD approach has been used to treat
problem.

In Sec. III A we showed that the MD code is in agreeme
with earlier work, in their ranges of validity. The MD ap
proach treats the problem at a more fundamental level,
therefore can be expected to have a wider range of vali
than alternative approaches. As such it is an extremely fl
ible technique for investigating the relaxation of the electr
energy distribution in plasmas, as well as providing a relia
benchmark against which to test faster, more speciali
codes.

In order to illustrate the flexibility of the MD code we
have considered two examples lying outside the range
validity of alternative methods. In Sec. III B we showed th
for a plasma produced by optical field ionization a Fokk
Planck calculation can yield inaccurate results, and in S
III C we considered a moderately coupled plasma (NDebye
'10). Understanding energy relaxation in plasmas of t
type is important for understanding the operation of n
types of short-wavelength lasers based upon optical field
ization.
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